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LIQUID CRYSTALS, 1987, VOL. 2, No. 6, 865-876 

On the conformational effects of intermolecular interactions 
in nematics 

by D. J. PHOTINOS 
Department of Physics, University of Patra, Patra 261 10, Greece, and Liquid 

Crystal Institute, Kent State University, Kent, Ohio 44242, U.S.A. 

(Received 14 May  1987; accepted 7 July 1987) 

A perturbation expansion of the pair correlation function is used to derive the 
molecular field self-consistency equations for non-rigid molecules. The order 
parameters and the thermodynamic functions are expressed directly in terms of the 
segmental interaction coupling constants. The values of these constants for the 
4-n-alkyl-4-cyanobiphenyls (NCB) are determined by analysing the orientational 
order parameters observed by N.M.R. in the nematic phase; they are in reasonable 
agreement with values obtained from calculations of the nematic-isotropic tran- 
sition temperatures. It is found that contributions of the isotropic intermolecular 
interactions to the conformational energy of the alkyl chain are comparable in 
magnitude to the direct intramolecular contributions. 

1. Introduction 
Whilst anisotropy of molecular shape is the microscopic basis of liquid-crystalline 

behaviour, molecular flexibility is a determining factor of stability of a given meso- 
phase relative to the solid and the isotropic liquid as well as relative to other possible 
mesophases. The effects of flexibility are reflected rather directly on the segmental 
orientational order profile of the molecule. Accordingly, theoretical developments on 
conformational statistics of liquid crystal molecules [l-91 are to a large extent directed 
towards the interpretation of the results of experimental studies of orientational order 
and of the phase transition thermodynamics. 

By realizing the importance of correlations between the orientational motion of 
the molecule and its conformational state, Emsley et al. [6] developed a simple theory 
for the interpretation of N.M.R. spectra of the deuteriated alkyl chain in the nematic 
phase. The theory is based on a single molecule, effective potential conforming to the 
following assumptions. (a) The anisotropic part of the molecular energy is the sum of 
the orientational energies of the individual segments. (b) These energies are given by 
a truncated expansion in spherical harmonics of the segmental orientations. Chain 
segments of the same type (C-C or C-H bonds) have identical, conformationally 
independent expansion coefficients, irrespective of their position within the chain. 
(c) The isotropic part of the potential is given by the conformational energy of the 
non-interacting chain. The same form of potential was used by Marcelja [5] in his 
early mean field study of the effects of chain length on nematic order. 

The resulting singlet probability distribution exhibits direct orientation- 
conformation correlations and provides a good description of the essential features 
of end-chain orientational order. However, the values of the conformational energy 
parameters required to reproduce [6,10,11] the results of N.M.R. measurements show 
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866 D. J. Photinos 

considerable variation with chain length and in some cases exceed the range of 
acceptable values for gaseous and liquid alkanes. This situation seems to be typical 
of a variety of calculations [4,9,12] where the free chain energy states are used to 
describe the conformational statistics in the mesophase. 

Such discrepancies are attributable to possible oversimplifications introduced by 
the basic assumptions (a), (6) and (c).  There is, in fact, no a priori justification for 
ignoring multisegment interaction terms, or dependences of the segmental interaction 
coefficients on position and conformation, nor for excluding isotropic (conforma- 
tional) energy contributions resulting from intermolecular interactions. But on the 
other hand, considerations restricted to the singlet probability do not offer a way of 
generalizing the effective potential in any of these respects (without introducing ad hoc 
phenomenological energy terms or constraints). 

The present work is addressed to the study of these assumptions, and related 
generalizations, from the point of view of their implications on the intermolecular 
interaction. In the next section a relation between the singlet distribution and the 
effective intermolecular interaction potential is established in the context of a per- 
turbation expansion of the long range part of the pair correlation function. A 
self-consistent mean field approximation suitable for the description of non-rigid 
molecules is derived as the first order solution. Section 3 contains a detailed account 
of the assumptions leading to the effective potential of the simplest form and of 
their implications on the intermolecular interactions in the mean field approximation. 
The basic parameters of the interaction are then determined by simulating the 
segmental orientational order parameters for the 4-n-alkyl-4-cyanobiphenyls (NCB) 
in the nematic phase and are subsequently used to calculate the temperature, the 
entropy differences and the order parameter values at the nematic-isotropic phase 
transition. Section 4 describes the contributions of the intermolecular interactions 
to the conformational energy. A- calculation performed by properly taking into 
account the spatial extension of the flexible chain when evaluating the isotropic part 
of the intermolecular segmental interaction shows that it is possible to reproduce the 
observed orientational order using the free chain conformational energy parameters. 

2. Derivation of the self-consistent molecular field approximation for 
non-rigid molecules 

The symmetries of liquid crystals and many of their readily measurable properties 
are directly reflected on the structure of the single molecule distribution function 
P ,  (x), which therefore is the natural starting point of mesophase statistical mechan- 
ical theories. The effective molecular potential V, (x) is defined in terms of P ,  (x) by 

P , ( x >  = (1/Z,) exp (- V , ( x ) / W ,  ( 1 )  

where x represents collectively all the relevant variables (positional, orientational, 
conformational), and Z ,  is the usual normalization factor. V, (x) may be decomposed 
into a part E,, describing the direct intramolecular interaction, hence depending only 
on the conformational state of the molecule, and a part V produced by intermolecular 
interactions, 

J f , ( x )  = + V ( x ) ,  (2) 

where n stands for the purely conformational subset of the variables x. It is possible 
to express V ( x )  to any desired accuracy by retaining a sufficient number of terms in 
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Conformational statistics in nematics 867 

an expansion of the form 

where f ( x ;  q )  are appropriate basis functions labelled by the collective index q. The 
effects of intermolecular interactions are then contained entirely in the expansion 
coefficients vq. Although a relatively small number of these coefficients are normally 
sufficient to account for the observed properties, they cannot be considered as the 
fundamental quantities of a theory. Rather, a theory is considered to be complete at 
the level of single molecule statistics if it describes the dependence of the v9s on 
temperature and molecular characteristics. 

A formal procedure towards this end would start by relating the vqs to the effective 
intermolecular potential U ( x ,  x’) through the condition 

P l ( x )  = P2(x ,  x’) dx‘ s (4) 

Here P2(x ,  x’) is the pair probability distribution function, defined in terms of 
U ( x ,  x’) according to 

P2(x, x’) = (l/Z,) exp { - (Eo(n) + Eo(n’) + U ( x ,  x ’ ) ) / k T } .  ( 5 )  

The procedure can in principle be continued by relating U ( x ,  x’)  to the three molecule 
effective potential etc., but here we shall restrict our consideration to the first step. The 
mathematical problem involved in this step is to use the condition of equation (4) in 
order to determine the form of U ( x ,  x’) that would be compatible with a given 
truncated form of V ( x ) .  The respective solutions are not unique in general, nor is it 
possible to obtain them exactly. To provide the framework for a suitable approxi- 
mation scheme, we introduce the pair correlation function 

g(x ,  x’) = P 2 k  x’) /P,  (XIPI (x’) (6 )  

W ( x ,  x’) = - kTlog(g(x,  x’)). (7 )  

and the associated correlation potential 

According to equation (4) g satisfies the condition 

The correlation function can always be factorized into a part go which prevents 
overlap of two molecules and a part g ,  which describes all correlations in excess of 
mutual excluded volume effects. The go part is supposed to be known once the 
geometry of each conformation and the type of intermolecular repulsion (hard-core, 
r -  12 , etc.) are specified. More generally, the factorization 

g ( x ,  x’) = go(x, x’)g,(x,  x’) (9) 

can be understood as a decomposition of the correlation potential into a known part 
Wo that includes the short distance repulsion, and a softer part W, representing longer 
ranged contributions, i.e. 

W ( x ,  x’) = Wo(x, x’) + WL(X, x’), (10) 

with the potentials W,, W, defined in terms of go,  g ,  by analogy to equation (7). In 
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868 D. J. Photinos 

view of these definitions equations (5) and (8) are written 

U ( x ,  x’) = V ( X )  + V ( X ’ )  + W0(x, x’) + W,(X, x’) + kTlog(Z:/Z2) .  (5 ‘ )  

(exp(- WL(X9 X’)/kT)),[,,] = l/(go(x9 x‘)),, (8’) 

and 

where use has been made of the notation 

( F ( x ,  x’))x[x’] = (go(x* X ’ ) W ,  x’)>,/(go(x1 x w x .  

This procedure transforms the problem of expressing a given set of vqs in terms 
of U ( x ,  x’) into that of determining W, subject to the condition of equation (8’). This 
transformation offers a way of obtaining approximation solutions by truncating the 
expansion 

(exp(- W L / k T ) )  = e x p ( - ( W J k T )  + ( ( ( W , / k T ) ’ )  - ( W , / k T ) ’ ) / 2  + . . . ). 
(1 1) 

Assuming that a truncation at the first term is meaningful, we obtain, in the resulting 
linear approximation, the expression 

( W L k  X’)>,[,,] = k T h ( ( g o ( x 9  x’)>,> (12) 

for equation (87, and by averaging both sides of equation (5 ’ )  we find the desired 
relation between U and V, 

(U(X9 x’) - Web, X’>>,[,,] = V(X’> + <V(x>>,,., + k T M ( g O ) , Z : / Z , ) .  (13) 

Provided that g,(x, x’) is equal to 1 everyhwere except in a region of the size of 
a few molecular diameters, the positional integration associated with the averaging 
operations in equations ( 1  2) and (1 3), when performed over the macroscopic volume 
of the sample Y, ,  will yield 

(go(x9 x’ ) ) ,  = 1 

and 

( V ( X ) ) , ~ , . ~  = ( V ( x ) ) ,  = constant, 

to within terms that vanish as { V,,,,,,,,/V,}. Hence these equations may be rewritten 
as 

( WL(X, X ’ ) L [ d ]  = 0 (1 2’) 

(u(x,  x’)) ,~, ,~ = V ( x )  + constant, (13’) 

and 

where 

u(x, x’) = U ( x ,  x’) - WO(X, x’), 

and the additive constant is of no significance since the potentials V and U are defined 
in equations (1) and (5) to within arbitrary additive constants. 

The linear approximation equations exhibit the trivial solution 

W ( x ,  x’) = 0, 
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Conformational statistics in nematics 869 

which is also a solution of the exact equations (5’) and (8’), and corresponds to 

u(x, x’) = V ( x )  + V(x’) ,  

i.e. as in the case of non-interacting molecules in an external field. They also allow for 
possible mean field type solutions with 

W ( x ,  x’) # 0, 

in which case equation (1 3) represents the self-consistency conditions on the mean 
field V ( x ) .  

It should be noted that equation (12) and (13) give a very general form of the 
self-consistent molecular field approximation since no specific assumptions are made 
about the detailed structure of g o ,  U and V ,  nor is any distinction made between 
conformational, positional or orientational variables in deriving these equations. The 
only essential assumption is that the decomposition of W ( x ,  x’) in equation (10) is 
such that a sensible truncation of the expansion of equation (1 1) at the linear term is 
possible. If x is restricted to positional and orientational variables then equation (12) 
reproduces the familiar mean field equations for rigid molecules as derived by dif- 
ferent procedures [13-151. 

3. Nematic order and conformational statistics of the alkyl chain 
The flexible molecules are assumed to consist of a number of uniaxial segments of 

fixed lengths. The orientation of the ith segment relative to the macroscopic frame is 
described by a unit vector wi pointing along the direction of the principal axis of the 
segmental interaction tensor. The orientational state of the entire molecule is then 
completely specified given the orientations wi of its segments or, equivalently, given 
the orientation w of the molecular frame (attached to a particular segment) and the 
set of orientations of all the segments relative to that frame. The latter set is denoted 
by the collective conformational index n.  The position R of the molecule may be 
represented by the position of a particular segment, or of the centre of mass, or of a 
properly defined centre of interaction. 

We shall consider apolar nematic phases where, as a result of translational 
invariance, we may write 

Plb) = P I W ,  n>/l/s, 

V ( x )  = V(w, n )  

and 

u(x, x’> = u(R - R’; w, n,  w’, n’). 

The apolarity of the phase implies that these functions are symmetric with respect to 
the exchange of w with - w. Under these conditions the expansion of equation (3) 
can be truncated at the second rank spherical harmonic terms to give the simplest 
non-trivial form of the effective potential, 

V(w, n )  = vo + 1 v: Y ( w ,  * N), 
i 

where N is the nematic principal axis and 

Y(w, * N) = (3(wi. N)’ - 1)/2. 
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8 70 D. J. Photinos 

With vo and v; chosen as constants, the property of additivity of segmental energies 
in equation (14) is a result of neglecting anisotropic multi-segment contributions of 
the form Y(w, * N)Y(w, - N) . . . . 

In order to use equation (13') to determine the form of u(x,  x ' )  implied by the 
hypothesis of conformational independence of vo and v; it is necessary to specify 
g,(x, x ' ) .  Clearly, from a computational point of view, the most simplifying way of 
preventing molecular overlap is to take go to depend only on the intermolecular 
distance r = IR - R'J. This amounts to approximating the conformational depend- 
ent, and geometrically rather complicated, mutual excluded volume by an effective 
sphere of radius R,. Using go(x,  x') % g o ( r )  in equation (13') it follows that the form 
of the intermolecular potential compatible with equation (14) is 

u(r; w, n, w', n') = 2 {u; ( r )  + u;' ( r )  Y(w, * w, )}, (15) 
I f  

with the coefficients v; subject to the self-consistency conditions 

v; = C i i y  ( Y(w; N)), (16) 
I 

where 

and the angular brackets imply averaging over w', n' with the distribution p ,  (w', n'). 
Equation (1 6 )  relates the expansion coefficients of the single molecule potential to the 
effective coupling constants iir which are the fundamental quantities of the theory at  
this level. In view of equations (l) ,  (2) and (16) the singlet distribution is completely 
determined by specifying these quantities and the intramolecular coupling constants 
describing the free molecule conformational energy, Eo(n). 

To formulate a definite model we consider a molecule consisting of a rigid uniaxial 
core and a flexible alkyl chain, and make the following assumptions regarding the 
details of the interaction. 

(i) The intermolecular interaction of the chain is a result of the uniaxial inter- 
actions of its individual C-C bonds. The unit vectors, wi, associated with the chain 
segments coincide with the respective C-C bond directions. There are just three 
independent intermolecular coupling constants corresponding to core-core, bond- 
bond and core-bond interactions. The number of independent constants is further 
reduced by assuming factorizability of the couplings according to 

(18) 

Tn this case we may take hi = 1 when i refers to the core, and h = h for any C-C 
bond of the chain. The intermolecular interactions are then completely specified by 
the two parameters 6, and h. Factorizability is theoretically exact when the molecules 
interact via dispersion forces. 

(ii) The intramolecular C-C bond interactions are described in the rotational 
isomeric state approximation [ 161. Only interactions between second and third nearest 
neighbours are included. In the standard three state approximation the respective 
coupling constants are the gauche energy E, and the energy of the g F g *  sequences, 
E,,,, . A tetrahedral geometry is assumed for all the C-C and C-H bonds of the chain. 
Intramolecular interactions between chain segments and the core are ignored. 

ii; = - ii2k'k". 
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Conformational statistics in nematics 871 

These assumptions are not essential to the theory. They are usually made 
[5,9,10,11] in order to simplify the calculations but can be relaxed in various ways 
to enrich the structure of the interactions if necessary. Nevertheless, the simplifying 
effect of the factorizability assumption on equation (1 8) is noteworthy since it leads 
to a single self-consistency condition. In particular, by defining the molecular function 

S(w, n) = hi Y(w, - N), 
I 

the singlet distribution is written as 

P , ( w ,  n) = ( l /z )exp(Ww,  n ) W  + eo(n>>, (20) 
where b = iiz/kT, eo(n) = - E,(n)/kT and the normalization factor is 

z = jexp(hS(w,  n ) ( S )  + eo(n)) dwdn. 

( S )  = (1/4 lS(w,  n)exp(bSW, n)(S> + eo(n)) dwdn 

(21) 

In view of equation (18) and (20), the conditions of equation (16) reduce to a 
self-consistency condition on the generalized order parameter ( S )  of the flexible 
molecules, 

(22) 

and a constant ratio relation 

~ y ~ / v y  = h.  (23) 

To express the thermodynamic quantities in this approximation we determine the 
dependence of the partition function Q on ( S )  by requiring that, for fixed T and V, ,  
the equilibrium value of ( S )  corresponds to a minimum of the Helmholtz free energy 

A = -kTlog(Q). 

Thus by writing Q = zL, where L is a function of ( S )  determined so as to give 

dA/d(S) = 0, 

and using the alternative form of equation (22), namely 

dlog(z)/d(S) = b ( S ) ,  

we find the free energy 

A = (b(S)*/2 - log(z)}kT + A,, (25) 

where A ,  is independent of ( S ) .  The free energy in the isotropic phase is obtained by 
setting ( S )  = 0 in equations (25) and (21). As a result of the appearance of a single 
order parameter, equations (22) and (25) bear a formal resemblance to the correspond- 
ing equations of the Maier-Saupe theory. Similar expressions were used in the mean 
field theory of Marcelja, where, however, the core and chain orientational order are 
decoupled in the self-consistency equations [5, 101. 

The constant ratio condition of equation (23) is a measure of the validity of the 
factorizability assumption and is supported by the results of N.M.R. temperature 
dependent studies [lo, 111. Following a different approach, Luckhurst [15] derived the 
constant ratio condition by treating the nematic phase as a mixture of rigid cores and 
chain segments. 
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872 D. J. Photinos 

Table 1. Results of fits to N.M.R. measurements of orientational order in the nematic phase 
of NCBs and of mean field predictions for the nematic-isotropic phase transition. The 
non-interacting chain conformational states are used, with Eg treated as a fitting par- 
ameter and E,,,, = 0. The experimental values [21] of ( &,re)NI are written in paren- 
theses next to the respective predictions. Phase transition results are obtained using 
h = 0.32 for all compounds. 

N 5 6 7 8 
~ 

E,/kJmol-' 1.9 (k0.6) 2.7 (k0.3) 2.1 (f0.6) 3.5 (f0.3) 
iiz /kJ mol- 5.4 (f0.5) 5.4 (kO.3) 5.3 ( f0 .3)  4.8 (f0.3) 
h 0.34 (k 0.07) 0.30 (k 0.05) 0.36 (f 0.08) 0.35 (f 0.06) 
(&)Nl/kJ mo1-l 5.9 5.5 5.6 4.8 
( Kcre )NI 0.49 (0.3) 0.40 (0.27) 0.52 (0.33) 0.40 (0.31) 
(s*)NI 0.39 0.3 1 0.38 0.29 
D.SN,/JmOl-' K- '  4'3 2.9 5 .  I 2.6 

To test the predictions that follow from equation (14), the singlet distribution of 
equation (20) was used to determine the values of the interaction parameters iiz and 
h by fitting deuterium N.M.R. data covering the entire nematic range of 5CB and 8CB 
[12,17] and also carbon-13 N.M.R. data on 5CB, 6CB and 7CB [18]. In these 
calculations the C-C bond linking the cyanobiphenyl group to the alkyl chain is 
counted as part of the rigid core and defines the direction of the core principal axis. 
The simulation was performed by treating Eg,  ii2 and h as fitting parameters. The 
results are summarised in table 1. 

The alkyl chain order parameters were reproduced with an average accuracy 
varying from about 12 per cent for 5CB to 3 per cent for 8CB. Although the details 
of the predicted profiles depend on the relative weights attributed directly or indirectly 
to the experimental points (minimization of absolute or relative overall deviation, 
constraints on maximum acceptable individual deviations, inclusion of experimental 
errors, etc.), the methyl group predictions are generally the least accurate as is the case 
with calculations involving just core and (equivalent) C-C bond interactions [ 101. 
It is found that the overall accuracy tends to improve with increasing chain length 
and temperature. The ranges of variation of E,, ii, and h that produce an increase of 
3 per cent in the average percentage deviation are indicated next to the calculated 
values of these quantities in order to provide a measure of the sensitivity of the fit. The 
odd-N compounds appear to be relatively insensitive to  variations of Eg . 

The iiz values exhibit a slow but systematic tendency to decrease with increasing 
N .  There is also a slight temperature dependence of ii, and h.  However, their overall 
variations with chain length and temperature do not exceed 30 per cent and thus in 
a first approximation it is reasonable to consider them as temperature independent 
and their average values as representative of the entire homologous series. In any case, 
such variations are to some extent expected as a result of the implicit dependence of 
these quantities on the effective molecular radius R,, , according to equation (1 7). 

The basic difficulty is associated with the wide variations of the calculated E, 
values with N .  These variations cover almost the entire range of E, values reported 
in the literature for gaseous and liquid alkanes [16, 191. The calculated values of E, for 
even-N members are notably above the result of recent measurements [19] of E, in 
alkanes ( -  2 kJ mol-'). The calculation is not sensitive to reasonable (50 per cent) 
variations of EgTgi about its free chain value ( N 12 kJ mol-'). However, much more 
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Con formational statistics in nemat ics 873 

accurate fits are obtained with EgTg+ = 0, indicating a suppression of third neighbour 
interactions. 

The nematic-isotropic phase transition predictions are based on the expression of 
equation (25) for the free energy and the assumption that i i2 ,  h,  E, and EgTg+ are 
temperature independent. The values of E, as determined from the N.M.R. fits were 
used, together with an average value of h equal to 0.32, to determine the phase 
transition values of the reduced temperature bN[, the entropy difference DsN,, the core 
order parameter ( yC0,),, and the molecular order parameter (S*) , ,  . The latter is a 
form of ( S )  normalized to 1 at perfect alignment, i.e. ( S * )  = ( S ) / ( ( S ) T + o ) ,  
and gives a suitable measure of the overall orientational order of the flexible 
molecule. 

The intermolecular coupling constant values, as determined from the phase tran- 
sition calculation, namely 

= k T N i b N i  3 (26) 
where TN[  is the measured phase transition temperature [20], are in reasonable 
agreement with the values obtained from the orientational order simulation. Also the 
even-odd effect is well reproduced by the calculated values of ( Yco,e)N1, (S*) , ,  and 
Ds,,. In view, however, of the underlying mean field approximation and the dis- 
crepancies associated with the conformational energy parameters, the numerical 
predictions should be understood as rough estimates of these quantities. 

The values of h, E, and E,,,, found for 5CB and 8CB and also the (Yco,e)NI 
predictions are in agreement with results of analogous calculations [6,10,21] based 
essentially on equations (14) and (23). 

4. Conformational contributions of intermolecular interactions 
The results of the preceding section, without providing direct indications of any 

severe failure of the assumptions about the additivity and the factorizability proper- 
ties of the interaction, suggest, through the inadequacy of the free chain energy alone 
to account for the observed order, that the conformational dependence of the iso- 
tropic part vo in equation (14) is not negligible. In terms of the effective intermolecular 
potential of equation (1 5) this means that the spatial extension of the molecules ought 
to be taken into account by evaluating the interaction energy of each pair of segments 
a t  the respective intersegmental distance instead of using a common intermolecular 
distance r for all pairs. 

Accordingly we consider, in the context of additivity and factorizability, the 
following expression for the intermolecular potential, 

u(r; w, n, w’, n’) = - 1 hih’{u , ( lRi  - RFI) + uZ(IRi - R,I) Y ( w i  * wi,)} ,  
ii’ 

(27) 
where R i  denotes the position of the ith segment. To perform the positional inte- 
gration implied in equation (13’) it is convenient to use the segmental positions 
ri = Ri - R relative to the molecular frame and to identify R with the position of 
the molecular centre of interaction defined by the condition 

1 h‘r, = 0. 
I 

Obviously each conformation has its own set of segmental positions ri and centre of 
interaction. 
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In the spherical approximation to go, the result of the positional averaging can be 
expressed in the form of a series expansion, 

iio(i, i') = uo(lr + ri - ryI)go(r) dr/K 

(29) 

I 
= iip + iih')(ri - rf)' + @{(ri - rf)'>' + . . . , 

and similarly for i i2( i ,  i'). The fibo) term is trivial. In contrast, the iii0) term is supposed 
to represent the leading contribution to the anisotropic interaction. Higher order iiirn) 
terms introduce conformational and positional dependence of the segmental orient- 
ational energy and also higher than second rank anisotropies. Hence an approxi- 
mation where only the leading terms are retained corresponds to 

iio(i, i ' )  sz iib')(ri - Ti.),, ii2(i, i ') z iis0) = u2. - (30) 

It should be noted that equation (29) is essentially an expansion in powers of the 
parameter Iri - rf1/2R,, and is therefore expected to be less accurate for the outer 
segments where ri is comparable to the effective radius R,,. However, with go treated 
in the spherical approximation, it is questionable whether the inclusion of higher 
order terms, or an exact integration in equation (29), constitute real improvements. 
According to equations (1 3') and (28) the isotropic part of V ( w ,  n) in the approxi- 
mation of equation (30) is given by 

and exhibits direct dependence on chain length and segment position. Following 
equations (2) and (30), the leading corrections to the conformational energy are taken 
into account simply by using 

= EO(4 + vo(4 

in place of E&) in the singlet distribution of equation (20). 
Results obtained with E(n)  are shown in table 2. In this calculation E, was no 

longer an adjustable parameter. The quantities ii,, h and E,$') = i i t )dz ,  where d 
denotes the length of the C-C bonds of the chain, were determined by fitting the 
N.M.R. data with E, = 2 kJ mol-' for all compounds. The centre of interaction of 
each molecular conformation was specified according to equation (28), with the 
positions of the chain segments represented by the C-C bond midpoints and that of 

Table 2. Results of fits to  N.M.R. measurements of orientational order in the nematic phase 
of NCBs and of mean field predictions on the nematic-isotropic phase transition 
obtained by including the leading contributions of the isotropic interactions to the 
conformational energy and holding E, fixed at  the free chain value and E g T g ,  = 0. 

N 5 6 7 8 

ziZ/kJ mol-l 5.9 (f  0.6) 5.7 (f 0.4) 5.1 (f0.4) 5.0 (k 0.4) 

( ycore )NI 0.45 0.39 0.43 0-37 
<S*)NI 0.38 0.32 0.34 0.29 
DsN,/Jmol-' K - l  3.2 2.5 2.4 1.8 

E, = 2 kJmol-'  

(iiZ)Nl/kJ mol-'  6.1 5.7 5.2 4.7 

Ed') = 0.32 (&  0.07) kJmol-'  h = 0.26 (f0.05) 
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the core by its centre of mass (determined from the core geometry implied by X-ray 
measurements [22]). The resulting N.M.R. fits are slightly improved even though the 
procedure is now more restrictive since the orientational order in the nematic phase 
of the homologous series is reproduced in terms of just the three constants ii2, h and 
I#).  The overall variation found for these quantities is again below 30 per cent. Whilst 
the details of the order parameter profiles resulting from the two calculations are 
different, the tendency of the average accuracy to improve with increasing T and N 
persists. We consider this to be an indication that the spherical approximation to go 
grows worse for shorter and/or better aligned chains. 

The phase transition values of the order parameters and the entropy exhibit 
the even-odd effect but other than that there are noticeable qualitative differences 
between the results of the two calculations reflecting the sensitivity of the nematic- 
isotropic predictions to the choice of the conformational energy. 

5. Concluding remarks 
The primary conclusion drawn from these calculations is that the inter- 

molecular interactions do modify appreciably the free chain conformational energy, 
and that the effects of such modifications can be reasonably accounted for by 
means of a single interaction strength parameter. In addition, it is worth noting the 
following. 

(i) As a result of the low values of E,,,, , the g'g' sequences appear to be more 
abundant in the interacting chain in spite of the fact that they produce quite the 
opposite of the elongated molecular shape that favours nematic order. This can be 
understood qualitatively as reflecting the conflict between the forces preventing 
intermolecular overlap and those preventing internal overlap (i.e. between segments 
of the same molecule), in the sense that internal overlap reduces in general the effective 
size of the molecule and thus makes intermolecular overlap less probable. 

(ii) A comparison between the results of tables 1 and 2 indicates that the 
values of the constant h and also the calculated values of entropy changes and 
order parameters at the nematic-isotropic transition are sensitive to the choice 
of the form of E(n). The N.M.R. measurements, however, were reproduced to 
essentially the same accuracy (10 per cent) in both cases. Accordingly, a higher level 
of accuracy is required in order to reach definite conclusions on the details of the 
interaction mechanism and to make firm qualitative predictions concerning the phase 
transition. 

(iii) Refinements such as the inclusion of biaxial interactions, the use of more than 
three rotational states, corrections to the tetrahedral geometry and taking into 
account the intramolecular coreechain interactions can improve the accuracy of the 
fits. Major improvements, particularly in the transferability of the basic parameters 
between members of the homologous series, should be expected, however, if a more 
realistic (i.e. orientation and conformation dependent) form of g,(x, x') is used to 
perform the averaging in equation (13). Clearly the assumption of a spherically 
symmetric go gives a rather distorted representation of the repulsive intermolecular 
forces and furthermore introduces an implicit dependence of the interaction par- 
ameters on the effective molecular radius R,, whose variation with chain length and 
temperature can only be treated as empirical input to the theory. The need for a more 
realistic consideration of the effects of short range repulsions is also suggested by the 
results of fits to N.M.R. data on n-alkanes in nematic solvents [9]. 
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